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Time-efficient implementation of quantum search with qudits
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We propose a simpler and more efficient scheme for the implementation of the multivalued Grover’s quantum
search. The multivalued search generalizes the original Grover’s search by replacing qubits with qudits—quantum
systems of d discrete states. The qudit database is exponentially larger than the qubit database and thus it requires
fewer particles to control. The Hadamard gate, which is the key elementary gate in the qubit implementation
of Grover’s search, is replaced by a d-dimensional (complex-valued) unitary matrix F, the only condition for
which is to have a column of equal moduli elements irrespective of their phases; it can be realized through any
physical interaction, which achieves an equal-weight superposition state. An example of such a transformation is
the d-dimensional discrete Fourier transform, used in earlier proposals; however, its construction is much more
costly than that of the far simpler matrix F. We present examples of how such a transform F can be constructed
in realistic qudit systems in a single interaction step.
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I. INTRODUCTION

Grover’s quantum search algorithm, invented some 15 years
ago [1], has become one of the most impressive showcases of
quantum computation. Its efficiency and relative simplicity
have made it not only a textbook example of the superiority
of quantum computers over their classical counterparts but
also a promising candidate for a subroutine in various
computationally hard problems. The Grover algorithm finds
a marked item in an unstructured database of N items in about
NG = (π/4)

√
N tries with a quantum computer, quadratically

faster than the classical routine, which requires O(N ) tries.
Grover’s algorithm can also be adapted to computationally
hard problems with structure, by nested quantum searches
[2]. Proof-of-principle Grover search has been demonstrated
in nuclear magnetic resonance with two [3] and three [4]
qubits (corresponding to 4 and 8 database elements), in linear
optics with 4 elements [5], and in trapped-ion systems with
4 elements [6]. Because the physical mechanism of Grover’s
search is amplitude amplification due to constructive wave
interference [7], this algorithm has been demonstrated also
in individual Rydberg atoms with 8 different levels serving
as the database elements [8] and in classical Fourier optics
with 32 elements [9]. Although these latter approaches have
outperformed the qubit implementations in terms of database
size, they are not scalable to large databases.

The quantum computers, if ever built, are expected to
outperform the classical computers for large databases, with
the benefits increasing with the database size N . The dominant
model of quantum computing uses qubits—two-state quantum
systems—linked in quantum circuits with various one- and
two-qubit gates. The size of the Hilbert space for an ensemble
of n qubits is 2n. The Hilbert space can be increased either by
increasing the number of qubits n, or by increasing the number
of logical states in each carrier of information and use qudits
instead of qubits [10]. There are often practical limitations for
increasing the number of qubits; then the use of qudits and the
ensuing multivalued quantum logic is a valuable alternative.

Qudits—quantum systems with d states |q〉0,

|q〉1, . . . ,|q〉d−1—offer exponentially higher dimensionality

than qubits. For example, it has been shown that qutrits—
three-state quantum systems—provide the best Hilbert-space
dimensionality [11], i.e., database size vs ease of control.
It has been shown recently [12] that for some qutrits the
most general SU(3) transformation can be realized with
similar resources—two fields and three steps—as the general
SU(2) transformation of a qubit. Besides the immediate
exponential increase of the Hilbert space qutrits offer
other advantages over qubits: more secure and efficient
quantum communications [13], new types of quantum
protocols [14,15], new kinds of entanglement [16], larger
violations of nonlocality [17], etc. To this end, a qudit
generalization of the Deutsch-Jozsa algorithm has been
proposed [18], which besides its original ability to distinguish
between constant and balanced functions, offers some new
functionalities.

Grover’s quantum search with qudits has also been pro-
posed, where the Hadamard gate, used in the original qubit
version, is replaced by a discrete Fourier transform (DFT)
[19] or another d-dimensional transformation [20] in order to
construct the reflection-about-average operator (also known as
the diffusion operator). A ternary Grover search was discussed
in [21]. We note, however, that some of these proposals
require numerous redundant physical interactions, which pose
unnecessary challenges to a quantum computer.

In this paper, we introduce a different implementation
of multivalued Grover’s search, which represents a consid-
erable simplification over the earlier methods [19–21]. Our
implementation of the reflection-about-average operator for a
qudit with d states requires the minimum possible number
of physical steps—just two compared to 2d steps in the
proposal of Li et al. [20] and 2d2 steps in the proposal
of Fan in [19]. Moreover, in our implementation of the
reflection-about-average operator, no specific phase relations
are required, which makes it far easier to implement than in
the two earlier proposals, which impose strict phase relations.
Furthermore, our implementation allows one to use resonant
external fields, unlike the implementation proposed by Li et al.
[20], which demands far detuned fields; resonant interactions
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allow the fastest implementation because they allow one to
use the minimum pulse area. We can therefore claim that
our implementation has a double speedup over the existing
proposals: the construction of the reflection-about-average
operator is faster by a factor of d or d2, and the coupling
fields can be on resonance, which is a speedup by at least a
factor of 10 as compared to far-off-resonance fields. Finally,
unlike earlier proposals, our implementation is amenable to
deterministic Grover search.

II. QUANTUM SEARCH WITH QUBITS

A. Overview of Grover search

Grover’s algorithm provides a method for solving the
unstructured search problem, which can be stated as follows:
given a collection of database elements x = 1,2, . . . ,N , and
an oracle function f (x) that acts differently on one marked
element s to all others,

f (x) =
{

1, x = s,

0, x �= s,
(1)

find the marked element in as few calls to f (x) as possible [1].
The database is encoded into a set of quantum states;

each element is assigned to a corresponding state. Therefore,
each possible search outcome is represented as a basis vector
|x〉 in an N -dimensional Hilbert space; correspondingly, the
marked element is encoded by a marked state |s〉. Thus one
can apply unitary operations (involving the oracle function)
to superpositions of the different search outcomes, which are
thereby searched in parallel. The Grover algorithm amplifies
the amplitude of the marked state |s〉 using constructive
interference, while attenuating all other amplitudes, and
locates the marked element in O(

√
N ) steps.

Before the execution of the algorithm, the quantum register
is prepared in an equal superposition of all basis elements [1],

|a〉 = 1√
N

N∑
x=1

|x〉 , (2)

with N = 2n, where n is the number of qubits. The algorithm
consists of the repeated execution of two sequential operations.

(1) Oracle query. The oracle marks the marked state |s〉
in each iteration by shifting its phase, leaving other states
unaffected: Rs(ϕs)|s〉 = eiϕs |s〉. In fact, this is a conditional
phase gate, which is implemented by a generalized reflection
in Hilbert space:

Rs(ϕs) = 1 + (eiϕs − 1)|s〉〈s|. (3)

(2) Reflection-about-average. This operation is a reflection
about the vector |a〉 with a phase ϕa:

Ra(ϕa) = 1 + (eiϕa − 1)|a〉〈a|. (4)

It can be constructed with the following operations.
(i) Apply the Hadamard gate,

H = 1√
2

[
1 1
1 −1

]
, (5)

to each qubit. This is a single-qubit operation, which can be
carried out to all qubits simultaneously.

(ii) Apply a conditional phase shift R0(ϕa), with |0〉 =
|0102 · · · 0n〉, wherein all qubits are in logical state |0〉.

(iii) Repeat step (i).
It can easily be verified that

H⊗nR0(ϕa)H⊗n = Ra(ϕa). (6)

The combined action of the oracle and the reflection-about-
average gives the Grover operator G,

G = Ra(ϕa)Rs(ϕs). (7)

With the initial state given in Eq. (2), and during successive
applications of the operator G, the state vector for the system
begins and remains in the two-dimensional subspace defined
by the nonorthogonal states |s〉 and |a〉. Each application of
G amplifies the marked state population until it reaches a
maximum value close to unity after NG iterations, at which
point the search result can be read out.

B. Deterministic quantum search

The problem of how to optimize the quantum search routine
by allowing arbitrary ϕa and ϕs has been studied extensively
[22–24]. It is known that the maximum possible amplitude
amplification per step of the marked state arises when the
phases ϕa and ϕs are both set to π , as in Grover’s original
proposal [1]. In this case, however, one does not obtain a unit
fidelity in the end. For a deterministic search (unit fidelity)
both phases ϕa and ϕs must be equal, ϕa = ϕs = ϕ, where

ϕ = 2 arcsin
sin π

4j+2

sin β
. (8)

Here j = �π/(4β) + 1/2�, β = arcsin N− 1
2 , and �x� denotes

the integer part of x. The corresponding minimum number of
search steps is [22]

NG = j or j + 1, (9)

if, respectively, (2j + 1)β or (2j − 1)β is closer to π/2. This
choice of phases is not unique. For large N , as long as the
phase matching condition ϕa = ϕs = ϕ is satisfied [23], a high
fidelity search can be performed for any value of ϕ in the range
π/2 � ϕ � π and, for certain values of ϕ, a deterministic
quantum search is possible [22].

III. QUANTUM SEARCH WITH QUDITS

A. Generalization of Grover’s algorithm

As in the original implementation with qubits, the imple-
mentation that we propose here with qudits begins with the
system initialized in an equal-weight superposition |a〉 of all
basis states, similar to Eq. (2) but with arbitrary relative phases.
To do that, first all qudits must reside in the logical states
|0k〉 (k = 1,2, . . . ,n), the collective state thereby being |0〉 =
|0102 · · · 0n〉. The superposition |a〉 is obtained by applying
the same transformation F independently on all qudits. The
transformation F generalizes the Hadamard gate H used in the
original qubit implementation. It can be achieved by means
of any physical interaction, which drives the single-qudit state
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|0k〉 into an equal-weight superposition state,

F|0k〉 =
d−1∑
q=0

ξq |qk〉, (10)

with
∣∣ξq

∣∣ = d−1/2, in all qudits (k = 1,2, . . . ,n). Thus F is
a representative of a large class of d-dimensional unitary
matrices, in which the first column contains elements of equal
moduli [25]. Upon application of F the collective state is an
equal-weight superposition,

|a〉 = F⊗n|0〉 =
N∑

x=1

αx |x〉, (11)

wherein |αx | = N−1/2, with N = dn being the database size,
and |x〉 designates the collective states of n qudits.

An example of F is the discrete Fourier transform F (DFT),
wherein all elements, Fjk = eiπjk/d/

√
d, differ only in phase.

The Hadamard gate (5) of a qubit is in fact the two-dimensional
manifestation of DFT. However, it is not necessary to assume
that F is indeed the DFT F because the construction of F for
d > 2 is very demanding; it requires the synthesis of an entire
DFT matrix, which needlessly attempts to transform the whole
basis of single qudit states into a new set of superposition states.
In fact, all we need for the matrix F is an interaction that creates
an equal-weight coherent superposition of the d states of each
qudit starting from the qudit state |0k〉 only. Moreover, the
relative phases in this superposition can be arbitrary while there
are strict relations for them in the DFT F ; it is only necessary
to use the same F in all steps. Of course, the matrix F must be
unitary, i.e., F† = F−1, because the interaction is supposed to
be coherent. In general, there are numerous suitable choices
for F, of which the respective DFT F is just one possibility
but certainly not the most convenient one for the reasons given
above: the only requirement is that F is unitary and has a
column of elements of equal moduli. As a side remark, it was
a circumvention of DFT that enabled to factor the number 21
in the experiment, described in [26].

Next one applies repeatedly the Grover operator, which has
the same form (7) as for qubits. The only difference from
Eq. (7) is that the Hadamard gate H is replaced by F, which is
contained in the reflection-about-average,

Ra(ϕ) = F⊗nR0(ϕ)(F†)⊗n. (12)

This is a reflection with respect to a state that is an equal
superposition of all N = dn possible collective states of a
system of n qudits.

The conditional phase shifts R0(ϕ) and Rs(ϕ) are imple-
mented in the same way as for qubits. There is a variety
of techniques for construction of these gates; for example,
efficient methods exist for trapped ions [27–29].

B. Construction of F

There are potentially numerous ways to implement the
interaction F in different physical systems. Recently, several
different scenarios for the synthesis of an arbitrary SU(3)
transformation of a qutrit, including DFT, have been proposed
[12]. Here we will show how the transformation F can be
constructed relatively easily in a multipod system, which is
one of the most natural and simplest realizations of qudits.

FIG. 1. (Color online) Qudit in a multipod linkage: linkage
patterns in the original basis (top) and in the Morris-Shore basis
(bottom). The qudit is formed of states |0〉,|1〉, . . . ,|d − 1〉, coupled
to each other by two-photon Raman processes via a common (ancilla)
state |c〉 with a common detuning �, but different single-photon Rabi
frequencies �k . In the Morris-Shore basis the multipod reduces to a
two-state quantum system formed of a bright state |b〉 and the original
ancilla state |d〉, coupled by the rms Rabi frequency �. State |b〉 is a
superposition of the qudit states weighted by the couplings �k; |un〉
are uncoupled (dark) states, which do not participate in the dynamics.

A multipod is a system of d degenerate quantum states
|0〉,|1〉, . . . ,|d − 1〉, coupled to each other by two-photon
Raman processes via a common (ancilla) state |c〉, as illustrated
in Fig. 1 (top). Such a coupling scheme usually arises
in systems of ions or atoms. �k = |�k| eiθk and � are
respectively single-photon (complex) Rabi frequencies and
detuning. If all coupling fields coincide in time, which we
assume hereafter, the dynamics of the multipod system is
reducible by the Morris-Shore transformation [30] to a two-
state system, as illustrated in Fig. 1 (bottom). The two states
are coupled by the root-mean-square (rms) Rabi frequency

�(t) =
√∑d−1

k=0 |�k(t)|2. Thus the dynamics of the multipod
can be derived from the two-state solution; the derivation can
be found elsewhere [31].

The propagator for the qudit manifold for rms pulse
area A = �

∫ ∞
−∞ f (t)dt = 2(2l + 1)π (with l = 0,1,2, . . .) is

given by the generalized reflection Rχ (φ), with

|χ〉 = 1

�
(�0,�1, . . . ,�d−1)T . (13)

062321-3



S. S. IVANOV, H. S. TONCHEV, AND N. V. VITANOV PHYSICAL REVIEW A 85, 062321 (2012)

FIG. 2. (Color online) Simulation of Grover’s search in a system
of 5 qutrits. The figure depicts the population of the marked state |s〉
vs the number of applications of the Grover operator (7). The vertical
dash indicates the time, when unit fidelity is obtained, corresponding
to NG = 12 search steps, as predicted by Eq. (9).

The acquired phase φ depends on the pulse shape f (t) and the
detuning. For a hyperbolic-secant pulse, f (t) = sech (t/T ),
with rms area A = 2π , φ is [31]

φ = π − 2 arctan(�T ). (14)

The generalized reflection can be created also for other pulse
shapes, e.g., Gaussian, but the required pulse area and detuning
have to be evaluated numerically.

We note that one of the possible implementations of F is the
reflection Rξ (π ), with |ξ 〉 = α(

∑d−1
q=0 ξq |qk〉 − |0k〉) and |α| =

1/
√

2(1 − Reξ0). It can be obtained in a multipod system with
resonant interaction (� = 0), wherein the couplings fulfill the
following conditions [31]:

�0 =
√

1

2

(
1 − 1√

d

)
, �k �=0 =

√
1

2(d − √
d)

. (15)

C. Example

Simulation of quantum search in a system of 5 qutrits
(d = 3, n = 5) is shown in Fig. 2, where the probability to
find the marked state is plotted as a function of time. The
corresponding database contains N = dn = 243 elements.
Unit probability is obtained in NG = 12 interaction steps,
denoted with a vertical dash, after which it decreases as a
part of oscillations between zero and unity in a long run.

IV. CONCLUSION

Earlier proposals for Grover’s quantum search with qudits
use the discrete Fourier transform [19] or other compound
transformations [20] to assemble the reflection-about-average
operator. These transformations, carried out twice at each
search step, demand an increasing number of redundant
physical interactions and thus pose unnecessary challenges
to a quantum computer. Instead, in our simplified scheme
for qudit Grover search we propose to use a reflection
operator F, achieved in a single physical interaction, which
does not even assume any phase relations between the fields
driving individual qudits. Our method minimizes the number
of algorithmic steps, as well as the duration of each step,
which results in a minimal number of interaction steps,
fast implementation, increased immunity against detrimental
effects of decoherence or inevitable imperfections, resulting
from coherent interactions, etc., and deterministic search.
Because of its conceptual simplicity, our method is applicable
in numerous physical systems. We have shown how F can be
constructed relatively easily, in a single interaction step, in a
multipod system, which is one of the most natural and simplest
realizations of qudits.
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